Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 13(1): 35, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553748

RESUMO

BACKGROUND: VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation. METHODS: Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors. RESULTS: Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent 'don't eat me' signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA's extracellular domain alone sufficed to trigger phagocytosis in ∼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1ß and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors. CONCLUSIONS: Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.

2.
Front Immunol ; 14: 1233113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559730

RESUMO

Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.


Assuntos
Apresentação de Antígeno , Luminescência , Humanos , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos
3.
Cell Death Discov ; 9(1): 204, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391408

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive molecular subtype that due to lack of druggable targets is treated with chemotherapy as standard of care. However, TNBC is prone to chemoresistance and associates with poor survival. The aim of this study was to explore the molecular mechanisms of chemoresistance in TNBC. Firstly, we found that the mRNA expression of Notch1 and CD73 in cisplatin-treated patient material associated with poor clinical outcome. Further, both were upregulated at the protein level in cisplatin-resistant TNBC cell lines. Overexpression of Notch1 intracellular domain (termed N1ICD) increased expression of CD73, whereas knockdown of Notch1 decreased CD73 expression. Using chromatin immunoprecipitation and Dual-Luciferase assay it was identified that N1ICD directly bound the CD73 promoter and activated transcription. Taken together, these findings suggest CD73 as a direct downstream target of Notch1, providing an additional layer to the mechanisms underlying Notch1-mediated cisplatin resistance in TNBC.

4.
Front Oncol ; 11: 710286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527583

RESUMO

The chemokine CXCL9 (C-X-C motif chemokine ligand 9) has been reported to be required for antitumour immune responses following immune checkpoint blockade. In this study, we sought to investigate the potential value of CXCL9 according to immune responses in patients with breast cancer (BC). A variety of open-source databases and online tools were used to explore the expression features and prognostic significance of CXCL9 in BC and its correlation with immune-related biomarkers followed by subsequent verification with immunohistochemistry experiments. The CXCL9 mRNA level was found to be significantly higher in BC than in normal tissue and was associated with better survival outcomes in patients with ER-negative tumours. Moreover, CXCL9 is significantly correlated with immune cell infiltration and immune-related biomarkers, including CTLA4, GZMB, LAG3, PDCD1 and HAVCR2. Finally, we performed immunohistochemistry with breast cancer tissue samples and observed that CXCL9 is highly expressed in the ER-negative subgroup and positively correlated with the immune-related factors LAG3, PD1, PDL1 and CTLA4 to varying degrees. These findings suggest that CXCL9 is an underlying biomarker for predicting the status of immune infiltration in ER-negative breast cancer.

5.
Int J Biol Sci ; 15(12): 2522-2537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754326

RESUMO

Despite remarkable advancements in our understanding of breast cancer, it remains the leading cause of cancer deaths in women. Distant recurrence and metastasis is the main reason for death due to breast cancer. It is well recognized that the GATA binding protein 3 (GATA3), a transcription factor, is a tumor suppressor in breast cancer. To date, the mechanistic molecular details of GATA3 remain elusive, because, as a transcription factor, it is not a direct executor in physiological and pathological processes. Here, we demonstrate that GATA3 reduces the ATP level in the breast cancer microenvironment and inhibits breast cancer metastasis by up-regulating ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3). The extracellular ATP concentration is significantly higher in tumor tissues than in normal tissues and promotes the migration of cancer cells from the primary site. ENTPD3 hydrolyzes ATP in tumor microenvironment and suppresses breast cancer metastasis. Furthermore, ENTPD3 inhibits epithelial-to-mesenchymal transition, a key program responsible for the development of metastatic disease. These findings provide novel insights into the tumor suppressor activity of GATA3.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Fator de Transcrição GATA3/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Fator de Transcrição GATA3/metabolismo , Humanos , Hidrólise , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Prognóstico , Microambiente Tumoral , Regulação para Cima
6.
Cancer Lett ; 440-441: 156-167, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336197

RESUMO

Resistance to chemotherapy remains a significant problem in the treatment of breast cancer, especially for triple-negative breast cancer (TNBC), in which standard systemic therapy is currently limited to chemotherapeutic agents. Our study aimed to better understand the molecular mechanisms that lead to failure of chemotherapy in TNBC. Herein, we observed elevated expression of Notch1 and major vault protein (MVP) in MDA-MB-231DDPR cells compared to their parental counterparts. We demonstrated that Notch1 could positively regulate the expression of MVP. Also, Notch1 intracellular domain (ICD) was capable of binding to CBF-1 on the promoter of MVP to drive its transcription, resulting in activation of AKT pathway and promoting the progress of epithelial to mesenchymal transition (EMT). Conversely, silencing of Notch1 and MVP suppressed AKT pathway, reduced EMT and enhanced the sensitivity of TNBC cells to cisplatin and doxorubicin. Survival analysis indicated that the MVP was closely related to shorter recurrence-free survival (RFS) in patients with TNBC. Collectively, this study provides evidence that Notch1 activates AKT pathway and promotes EMT partly through direct activation of MVP. Targeting Notch1/MVP pathway appears to have potential in overcoming chemoresistance in TNBC.


Assuntos
Receptor Notch1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/biossíntese , Receptor Notch1/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Partículas de Ribonucleoproteínas em Forma de Abóbada/biossíntese , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética
7.
NPJ Breast Cancer ; 4: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109262

RESUMO

Basal-like breast cancer (BLBC) is an aggressive subtype with a strong tendency to metastasize. Due to the lack of effective chemotherapy, BLBC has a poor prognosis compared with luminal subtype breast cancer. MicroRNA-221 and -222 (miR-221/222) are overexpressed in BLBC and associate with metastasis as well as poor prognosis; however, the mechanisms by which miR-221/222 function as oncomiRs remain unknown. Here, we report that miR-221/222 expression is inversely correlated with Notch3 expression in breast cancer cell lines. Notch3 is known to be overexpressed in luminal breast cancer cells and inhibits epithelial to mesenchymal transition (EMT). We demonstrate that miR-221/222 target Notch3 by binding to its 3' untranslated region and suppressing protein translation. Ectopic expression of miR-221/222 significantly promotes EMT, whereas overexpression of Notch3 intracellular domain attenuates the oncogenic function of miR-221/222, suggesting that miR-221/222 exerts its oncogenic role by negatively regulating Notch3. Taken together, our results elucidated that miR-221/222 promote EMT via targeting Notch3 in breast cancer cell lines suggesting that miR-221/222 can serve as a potential therapeutic target in BLBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...